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Abstract
We investigate a totally asymmetric simple exclusion process (TASEP) on a periodic hexagonal
lattice with a single unit cell. We first explain the resulting stationary density profiles and the
resulting fundamental current–density relation in terms of mean-field arguments. For
intermediate overall densities, transport through one of the segments saturates in a maximum
current phase, whereas the others develop domain walls of fixed height but fluctuating position.
Via kinetic Monte Carlo simulations we focus on and fully characterize their non-equilibrium
and stochastic phenomenology. We invoke a picture of anticorrelated domain wall dynamics,
which we visualize as a diffusing obstruction of constant size (‘jam’). The role of the boundary
conditions is discussed by comparing the periodic lattice carrying a fixed number of particles to
a system coupled to reservoirs at open boundaries which is periodic only on average. We
highlight the differences in their dynamics based on a novel visualization of domain wall
motion at an intermediate ‘mesoscopic’ timescale.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A variety of laboratory systems has revealed interesting
physics which may be described in terms of transport on
1D or quasi-1D structures: the motion of colloidal particles
in narrow channels [1] or in beams of an optical trap [2],
the transport and force production of molecular motors on
bio-filaments [3–5] and the diffusion of chemical species on
zeolites [6] may be cited as examples. Their phenomenology
can be rich and subtle, but many of the main features of the
associated transport phenomena may be understood in terms
of a totally asymmetric simple exclusion process (TASEP) on
a lattice [7–11], which has particularly simple rules: at regular
intervals randomly selected particles advance one site in a
fixed direction, subject only to an excluded volume condition

forbidding multiple occupancy. TASEP not only constitutes a
perfect toy model for many fundamental questions [12], but
often also provides valuable guidance to identifying the main
features of a particular transport mechanism (indeed, TASEP
was initially formulated to schematize ribosome traffic in gene
expression [7]).

In this paper we address the point that, in many situations,
transport may in fact take place on a network of such
quasi-1D segments, linking them at particular points which
we will call ‘junctions’. Without attempting to model the
following in any detail at this stage, we cite examples from
various domains: active transport of molecular motors on a
structure of crosslinked filaments [13]; advection of particles
in the fluid phase of a foam, in particular in foam drainage
when the particle size is comparable to that of the channels
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Figure 1. Illustration of the network used. (a) A hexagonal lattice is decomposed into unit cells, to which periodic boundary conditions are
applied. (b) The network is therefore constructed from three segments of L lattice sites each, with two additional sites for the junctions. We
label the ‘central’ branch by C, and the ‘split’ branches by A and B, respectively. (c) The segments, junctions and boundary conditions as
implemented. Dotted boxes are the periodically equivalent copies of the corresponding full boxes.

(a case complementary to [14]); traffic of vehicles on road
networks [15].

Attempts to characterize TASEP transport on isolated
elements of a network have been made in the past; in
particular, studies of the effect of a single junction [16] and
of a double section [17] have been performed, both using
open boundary conditions, and have also been considered for
vehicular traffic [18]. Here, we present a systematic study of
TASEP transport on a periodic hexagonal structure, which we
denote HEX-TASEP, and show that the role of fluctuations in
the transport process may be pinpointed particularly clearly.
We expose and analyse the resulting dynamics within this
system, and show that it may be visualized as the diffusive
motion of a high-density region of particles (a ‘jam’) pinned
to the junctions. We then address the question of boundary
conditions, by comparing the transport on this periodic
structure to a related open structure with particle reservoirs. We
characterize fluctuations and make a link with the domain wall
picture [19], most rigorously exploited on linear sections [20].

2. The model: TASEP on a periodic lattice of
hexagonal topology (HEX-TASEP)

We consider TASEP dynamics on a periodic hexagonal lattice,
as illustrated in figure 1(a). To this end, we simulate one
unit cell composed of three branches, comprising one ‘central’
branch C and two ‘split’ branches A and B, each consisting
of L = 100 lattice sites4. These branches are connected via
an additional site at each junction in the manner illustrated
in figures 1(b) and (c), thereby enforcing periodic boundary
conditions. This is arguably the simplest periodic structure
involving branches, the dynamics of which we set out to
explore in view of guidance for the study of more complex
networks. Particle moves are attempted according to a random
sequential update scheme: in each cycle, we select 3L+2 sites,
which sets our time unit; particle displacements are always
attempted according to the directions indicated, and fail if the
new site is already occupied. At the network junction, where
branch C splits into branches A and B, we select either with
equal probability.

4 Although we do not present a systematic discussion of finite size effects
here, we note that none of the phenomena described are artefacts.

Figure 2. Fundamental diagram for the overall transport
characteristics for HEX-TASEP on a periodic hexagonal lattice (full
squares), showing the (average) current J as a function of the overall
particle density ρ. For comparison, the dashed line (below)
represents simple TASEP characteristics, as explained in detail in the
text, whereas the dot–dashed line (above) represents TASEP with a
projected density ρproj ≈ 3ρ/2. The labels correspond to a
mean-field classification (cf figure 3). Open squares correspond to
the open system to be discussed in section 7, and include
non-periodic configurations: on the plateau, ρ = 0.50 is the only
point corresponding to a periodic (average) density profile.

Initial configurations are constructed from a random
distribution of the desired number of particles over all
branches, which we then run until a stationary state is achieved,
i.e. until the time-averaged density profile ρ̄(x) no longer
changes in time (typically 106 cycles).

3. Transport characteristics

The overall particle density ρ = N/(3L+2) is the only control
parameter in this model, and we therefore start our analysis
with the overall transport capacity of the system, characterized
by the average current J (ρ) (cf figure 2), defined as the number
of particles passing branch C per unit time.

The observed transport is always superior to that in
standard TASEP without split branches (dashed parabola), as
must be the case. The initial slope in J (ρ) at low densities
follows what one would predict from an effective TASEP,
arguing that the relevant particle density is a projected density
ρproj = N

2L+2 ≈ 3
2ρ, since the actual distance a particle has to

2
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Figure 3. Density profiles for various overall densities ρ, averaged
over long times (106 cycles). The sites x < 0 are the middle branch
C, whereas sites x > 0 correspond to the split branch A; full symbols
represent the junction sites (0,±101). Results for B (not shown) are
indistinguishable. The densities shown are selected to illustrate the
different density regions introduced in figure 2: ρ = 0.05 (squares)
corresponds to low-density phases in the central as well as in both
split branches (labels LD and 2LD); ρ = 0.95 (circles) leads to the
high-density equivalent (labels HD and 2HD). For all densities
within the zone of saturated current (0.264 � ρ � 0.736), the
maximum current profiles (MC) in the central branch are
indistinguishable. In the split branches, close-to-linear zones (JAM)
arise in the density profiles in addition to HD or LD zones (examples
shown: ρ = 0.35 and 0.65, upwards and downwards pointing
triangles); for ρ = 0.5 the entire split profile is almost linear.

travel in order to cross a unit cell is 2L (not 3L). This amounts
to saying that, for low densities, particle collisions are rare, and
therefore the presence of an extra segment in the split section
of the network has a negligible effect. More interestingly,
however, at a density ρ � 0.26 the current saturates at a
value of Jmax = 0.25, which corresponds to the mean-field
prediction [8] for a maximum current phase. This maximum
value is achieved on a large plateau of intermediate densities
(0.26 � ρ � 0.74). The transport characteristic curve J (ρ)

furthermore obeys the particle–hole symmetry; focusing on
densities ρ � 1/2 is therefore, in principle, sufficient.

We shall first pursue a more detailed analysis of this
periodic hexagonal model, before returning to the fact that an
identical J (ρ) curve has also been obtained in a related but
different system [17], thereby posing the question of the role
of boundary conditions.

4. Mean-field analysis: low-/high-density regions

Beyond the global transport characteristics, it is instructive
to examine particle density profiles, i.e. the time-averaged
particle densities ρ(x) on site x . Figure 3 shows such profiles,
averaged over an entire simulation (106 cycles), for various
values of the overall density. We can rationalize them using
mean-field arguments based on a standard (line topology)
TASEP model, which is known to display low-density (LD),
high-density (HD) or maximum current (MC) phases [8, 9].
Due to particle conservation, the currents in the individual
branches must add up as

J ≡ JC = JA + JB. (1)

Figure 4. Particle densities in individual branches of HEX-TASEP
with periodic boundary conditions, as a function of the overall
particle density. Lines are mean-field results; symbols indicate
simulation data, averaged over 106 cycles. As the overall density is
increased beyond the critical density ρ∗

−, the central branch develops
an MC phase into which, on average, no further particles can be
accepted.

Furthermore, in a mean-field stationary state, the split
branches must behave symmetrically (on average), and
therefore ρA = ρB ≡ ρAB and JA = JB ≡ JAB. For
low overall particle densities ρ, all branches must be in
an LD phase. Assuming now the mean-field expression,
Jk = ρk (1 − ρk), to hold in any of the branches k = A, B,
C, we obtain

ρAB (1 − ρAB) = 1
2 ρC (1 − ρC). (2)

We can now use the overall conservation of particles ρ ≈
1
3 (ρC + 2ρAB) to solve for the densities ρC and ρAB,
respectively. The algebra being straightforward, we do not
quote the full expression here, but indicate that figure 4
highlights the excellent agreement with simulation data.
Solving analytically for the overall density ρ at which the
density in the central branch reaches ρC = ρMC = 1/2, the
mean-field value for a MC phase, yields an overall density of
ρ∗− = 1

2 −
√

2
6 ≈ 0.264, which corresponds very well to the

onset of the plateau in figure 2. An equivalent analysis holds
for high particle densities, involving coexistence of three HD
branches, defining ρ∗+ = 1 −ρ∗− ≈ 0.736 for the upper limit of
the plateau.

5. Mean-field analysis: plateau of optimum transport

Once the transport plateau (cf figure 2) is reached, the current
JC is truncated at a value of 1/4, which is a telltale sign for
a maximum current phase. Indeed, simulations reveal the
characteristic density profiles for a MC phase in the central
branch C (see figure 3 for a snapshot). We may attempt a mean-
field interpretation by recalling first that, on average, a MC
phase corresponds not only to a specific current (JMC = 0.25),
but also to a specific density (ρMC = 0.5). In a mean-
field spirit, either of the split branches must carry half the
total current, JA = JB = 1/8, and imposing the mean-field

3
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expression J = ρ (1−ρ) therefore yields low and high average
densities in the split sections5

ρLD,HD = 1

2
±

√
2

4
. (3)

The profiles obtained by simulation are shown in figure 3,
confirming that these densities indeed characterize the split
phases, albeit not entirely. Consider e.g. the average profile
‘2LD + JAM’ (ρ = 0.35). The part of the split sections
adjacent to the inlet (site 1) carries an average particle density
which is indistinguishable from the mean-field value ρLD ≈
0.146. Towards the outlet, however, an almost linear profile
arises, which we will now rationalize.

Firstly, once the total particle number is sufficient to
establish the MC phase in the central branch, the latter cannot
accept any further particles. This is obvious on average (since
ρMC = 0.5, independent of the overall density), but also
closely followed instantaneously (90% of all instantaneous
configurations correspond to densities of ρC = 0.5 ± 0.05,
averaged over branch C; data not shown). Therefore, upon
increasing the overall density, the extra particles must be stored
in the split branches (A, B), where it is natural for them to pile
up at the outlet, since the junction joining the two branches
constitutes a transport-limiting defect.

Secondly, however, the densities in the split branches are
also fixed, on average, to ρLD or ρHD. The only way to
accommodate extra particles is therefore by coexisting phases
of densities ρLD and ρHD in the split branches, in a proportion
allowing us to match the fixed total number of particles in the
system. The central part of figure 4 confirms that this simplistic
reasoning is indeed appropriate. Note furthermore that the
overall length of the ‘HD’ zone may be estimated from these
arguments as lJAM = 6L(ρ −

√
2

6 )/(3 − √
2), which is indeed

well respected.
On the other hand, this implies the existence of domain

walls [9] in the split branches. This is indeed apparent from
the short-time local sojourn probability shown in figure 5:
each split section carries a domain wall separating a low-
density phase (at the inlet) and a high-density phase (at the
outlet). The respective densities are almost indistinguishable
from the mean-field values ρLD,HD (cf equation (3)). We will
now characterize the dynamics of these domain walls and
show that, in contrast to a previous study with open boundary
conditions [17], this allows us to rationalize the above average
density profiles entirely.

6. Beyond mean field: phenomenology of correlated
domain wall dynamics on the transport plateau

From now on, we focus on the region revealing the most
interesting dynamics, ρ∗− < ρ < ρ∗+, such that the central
branch carries a MC phase and domain walls (DWs) arise in
the split sections. We base our description on the following
observations.

5 These values have also been stated [16, 17] for the open system to be
discussed in section 7.

Figure 5. A ‘mesoscopic’ snapshot of an averaged profile, based on
a short-time average (100 cycles), shows that the high-density zones
at the outlet instantaneously extend into both split branches. It is a
random walk of this ‘jam’, caused by microscopic fluctuations in the
number of particles entering/leaving the split branches A and B,
which accounts for these linear profiles (JAM) in the
long-time-averaged density profiles in figure 3. A microscopic point
of view is detailed in appendix A.

(i) At any instant in time, each split branch carries a low-
density zone at its inlet and a high-density zone at its
outlet, the two being separated by a domain wall; we
may therefore think of a ‘jam’ region pinned to the outlet
junction, extending into both split branches, delimited by
a domain wall in each split branch.

(ii) The total number of particles is fixed by the overall
density, and the number of extra particles to be
accommodated in the split branches has been seen to be
approximately constant; the ‘jam’ may therefore be taken
to be of roughly constant size, set only by the overall
density.

(iii) The stochastic processes at the junctions introduce
fluctuations in how the extra particles, and hence the high-
density zones, are distributed between the branches; the
‘jam’ therefore diffuses due to these fluctuations.

We rationalize this picture recalling first that the MC phase
has a fixed particle density and therefore cannot accommodate
any additional particles, necessarily leading to high-density
zones in the split branches which are swept to the bottleneck
(the junction point). A microscopic representation of the
resulting jam’s motion may now be motivated by considering
a time interval during which, on average, one particle is
transported through the maximum current branch (i.e. T̃ =
1/JMC = 4 cycles). This particle must enter one of the split
branches, and we may assume it has equal probabilities for
choosing either, given that both branches are in an LD phase
at the inlet. Similarly, one particle must leave the split section
through the outlet, and again we may assume it to originate
from either branch with equal probability, given that the outlet
zone is HD in both branches. A given branch therefore receives
zero or one particles (with probabilities 1/2 each), while losing
zero or one particles (with the same probabilities). Since any
change in the number of particles in one branch must occur
at the expense of that in the other branch, the net effect is
therefore that the jam has shifted by the equivalent of 0 or ±1

4
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Figure 6. Mean-square displacement for the jam, characterized by
the position of its centre X , measured from the junction point, as a
function of time. All simulations were started with the jam centre at
the outlet. The slope shown is the theoretical prediction (see text).
The saturation for long times is due to the finite excursions of the
jam, which remains pinned to the downstream junction.

particles. From this process we can deduce a diffusion constant
for the jam centre of DJAM = √

2/16 in dimensionless units
(see appendix A). This is indeed corroborated by numerical
data (figure 6) showing the ensemble-averaged mean-square
displacement of the centre of the jam.

7. Comparison to an effective system with open
boundary conditions

We now address the role of boundary conditions. To do so,
we construct a second system, obtained from the hexagonal

periodic lattice used above by breaking the periodicity at the
middle of the central section and connecting the resulting
half-segments to reservoirs (see figure 7). We therefore have
a section of length L/2 into which particle insertions are
attempted with probability α, followed by two split sections of
length L, followed by another section of length L/2, at the end
of which we absorb particles with probability β . This system
is very similar6 to the one studied by Brankov et al [17]. To
make contact with our system, we may impose α = 1 − β [9],
which ensures the overall density profile is spatially periodic
on average.

The open boundaries in this system obviously lead to
fluctuations in the number of particles, and the image of a
‘jam’ undergoing simple diffusive motion must fail. Although
the current J (ρ) obtained for a given density ρ is found to
be identical to that of a closed system (see figure 2), the
underlying fluctuations and the resulting dynamics by which
this average transport is achieved are entirely different.

To describe and compare the dynamic behaviour, we
introduce a simple method to characterize the system at an
intermediate timescale. To this end, we sample density profiles
in the split branches A, B, which we average over τ = 100
cycles. At this scale, much larger than the individual cycle
but much smaller than the time required for a domain wall to
diffuse over the length of an entire branch, we can localize the
domain walls in both branches. This ‘mesoscopic’ approach,
further details of which can be found in appendix B, allows
us to reliably detect the domain wall positions as well as to

6 However, each of our single sections has length L/2, rather than L , and
we do not couple moves between both split sections, but treat all particles as
independent.
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Figure 7. Vector fields characterizing domain wall dynamics at ρ = 0.5: arrows indicate the displacement of the domain walls within the next
100 cycles (cf text), as averaged over 108 and 3 × 108 cycles, respectively. Results have been coarse-grained over 5 × 5 positions to improve
statistics and rescaled for readability. (a) Periodic hexagonal lattice and (b) branches with two junctions and open boundary conditions
(α = β = 1/2). XA,B label positions of the domain walls within the split branches (zero corresponds to the inlet).
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trace their evolution with time. The dynamics of the system
are therefore characterized by the sequence of the domain wall
positions XA(t) and XB(t) in both split branches.

We then visualize the system’s dynamics by representing
the phase space {XA, XB}. Every time a state point is visited,
we detect the subsequent displacement with respect to the
next domain wall positions; by sampling time averages of
these displacements, we build up a vector field representing
the time-averaged movement of domain walls. The result
for the periodic hexagonal system is shown in figure 7(a),
which reflects the features described above: the overall
particle number being fixed, the domain wall positions are
anticorrelated and restricted roughly to the antidiagonal;
deviations are small and redressed by the dynamics; domain
wall positions implying large variations in the particle number
are essentially forbidden. The longest arrows arise at the corner
zones, corresponding to the maximum excursion of the jam
region, and are directed along the antidiagonals: once the HD
jam has completely swept into one branch, it cannot migrate
further (since entering the MC phase, which cannot accept
particles, is forbidden); therefore, the HD jam must necessarily
return into the branch it has momentarily vacated: the jam
undergoes ‘reflection’ at maximum excursion.

A comparison to the system with open boundary
conditions may now be made for α = β = 0.5, which ensures
periodic averaged density profiles at a constant average overall
density of ρ = 0.5. The corresponding displacement diagram
(figure 7(b)) highlights the complete change in dynamics.
Particle number fluctuations due to the reservoirs render all
state points accessible, and the domain walls no longer evolve
in an anticorrelated manner. Rather, they execute individual
random walks (arrows at state points in the central region
average out to very small displacements with no particular
orientation), except at the edges of the diagram, where
‘reflection’ is due to the same mechanism.

8. Discussion

In this paper we have introduced topological aspects to
the TASEP model, using a hexagonal network structure to
illustrate the effects on transport of branching and junctions
in a network of periodic topology. We have studied the
simplest possible periodic system, a one-cell hexagonal lattice,
the understanding of which is crucial before addressing
more complex networks. A rich phenomenology arises,
involving different regimes according to the overall density,
with transitions at critical values which are well predicted
by mean-field arguments. In particular, at intermediate
densities the fundamental diagram J (ρ) saturates as a dynamic
high-density ‘jam’ forms, pinned to the junction where two
branches join. The observed time-averaged density profiles
may be interpreted in terms of a random walk of this ‘jam’
due to microscopic fluctuations. Introducing a ‘mesoscopic’
characterization of domain wall dynamics, based on the short-
time-averaged position of domain walls, the jam is associated
with anticorrelated domain wall displacements, and is seen to
be reflected at its maximum excursion.

Boundary conditions play an important role, as is illus-
trated by opposing what might be considered generalizations of

the canonical and grand-canonical ensembles for 1D transport:
a closed system (periodic, with a fixed number of particles) and
an open system (periodic only on average, with a given aver-
age number of particles). Both lead to undistinguishable av-
erage transport properties J (ρ), but remarkably these are sus-
tained by entirely different dynamics. This illustrates an impor-
tant aspect for modelling of transport on networks: whereas an
approach in terms of effective rates may be expected to capture
the average transport J (ρ), no information may be obtained
on the underlying dynamics or even on the resulting average
density profiles in the system.

The simple model of HEX-TASEP on a single unit
cell therefore constitutes a non-trivial starting point for
understanding the role of topology and boundary conditions
within driven transport on branched networks. In particular, its
relative simplicity makes it a good candidate for a quantitative
analysis of the correlations between domain wall motion and
their fluctuations, as well as the nature of the transitions
between the various dynamical regimes. Generalizations to
more complex topologies are clearly to be envisaged. As a
lead to follow, we mention a fourfold unit cell, retaining a fully
periodic hexagonal structure but relaxing the periodicity on
instantaneous particle configurations. Preliminary simulations
indicate that the phenomenology is yet more intriguing, but
that insight gained in this paper is indeed useful: the four-cell
network retains aspects of both the open and the closed single-
cell system. We expect progressive generalizations addressing
disorder to provide further valuable guidance for the analysis
of transport phenomena on disordered networks.
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Appendix A. Jam diffusion coefficient on the
transport plateau

In the main text we have related the effective diffusion of the
‘jam’ to microscopic fluctuations at the inlet and the outlet of
the double section (see section 6). Here we provide a detailed
derivation of the associated diffusion constant, which is also
represented in figure 6. In contrast to the main text, where
dimensionless units are used throughout, it will be helpful
here to work with variables carrying their proper physical
dimensions.

The main point in the mechanism suggested in section 6
is that particles arriving at the inlet of the double section
randomly select either of branches A or B, and particles leaving
the double section through the outlet randomly originate
from either of branches A or B. Furthermore, these random
processes are taken to be independent. Their net effect has
been seen to be a change in particle number of a given branch
(branch A, say), of 0 (with probability 1/2) or ±1 (with

6
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probability 1/4 each). The total change of particles �NA

since the starting value therefore follows a standard random
walk, except that there is a 50% chance of not moving at all.
Furthermore �NB = −�NA must be strictly anticorrelated
due to the fact that the MC phase cannot absorb particles.
Since the extra particles are swept downstream and therefore
ultimately pile up to change the length of the HD region, we
can therefore relate this process to the random walk of the
centre of the jam, which we undertake to characterize by a
diffusion constant.

Further consideration is required, however, since this
effective shifting of one particle from one branch to the other
displaces the domain wall not by the distance δ separating two
neighbouring sites, but rather by

δ̃ = 1

ρHD − ρLD
= √

2 δ. (A.1)

Here we have used the fact that a domain wall separates an HD
and an LD zone, with a density difference of (ρHD − ρLD),
which may be evaluated using equation (3). The random
walk of the jam centre X therefore involves a step size of
δ̃ = √

2 δ. Consequently, the associated diffusion constant
may not be interpreted directly as that of the jam centre, which
evolves in steps of the lattice constant δ. We must therefore
consider a different time interval, say T , such that the domain
walls in A and B (and hence the jam centre) displace by a
multiple of the lattice constant δ (i.e. by 0 or ±δ). Since
the current JMC = 1/(4�t) = 1/T̃ in the common branch
supplies n = JMC T particles over the interval T , the latter is
determined by matching the resulting jam displacement onto
the lattice constant

n

ρHD − ρLD
= δ, (A.2)

which therefore fixes the elementary time step as

T = T̃√
2

= 4�t√
2

. (A.3)

The relevant time interval is therefore shorter. The average
mean-square displacement of the random walk associated with
the jam centre, with the time interval T separating successive
steps7, is then given as a function of time by

〈�X2〉 =
(

1

4
(+δ)2 + 1

2
(0) + 1

4
(−δ)2

)
t

T

= δ2

2

�t

T

t

�t
= δ2

2

√
2

4

t

�t
. (A.4)

Using the definition of the associated diffusion constant
〈�x2〉 = 2Dt yields therefore

DJAM =
√

2

16

δ2

�t
, (A.5)

7 It may be worth pointing out that, somewhat subtly, adapting the time
interval in this way is different from deducing a diffusion constant of the
random walk in units of an ‘effective’ rescaled step size δ̃ = √

2 δ, with a
time interval of T̃ . Such an intuitively appealing argument would not in fact be
correct, since the displacement of the jam (e.g. as monitored in a simulation)
evolves in steps of δ. These arise randomly, whereas operating in terms of
the ‘stretched’ steps δ̃ would introduce an (erroneous) element of persistency
between successive steps. The argument of a rescaled effective step size would
therefore overestimate the diffusion constant.

in the natural units used for the particle displacements (step
size δ and time step �t), as announced in the main text.

Appendix B. Domain wall localization via mesoscopic
time averages

We detail here the algorithm we have used for locating
the domain wall (DW) positions on the transport plateau
(cf figure 2), and in particular for the diagrams shown in
figure 7. It relies on exploiting a ‘mesoscopic’ timescale,
intermediate between the microscopic fluctuations in the
occupation number of a given site and a macroscopic regime in
which mean-field theory describes the average density profiles.
For times of the order of individual simulation cycles, the
occupation number of a given site may fluctuate, and any such
fluctuation may create an additional micro domain wall (μDW,
defined as an interface between an empty and an occupied site),
or destroy such a μDW. In order to extract positions of a
macroscopic DW we therefore have to consider a timescale
τ which is much larger than the fluctuation of individual site
occupation, but much smaller than DW migration (equivalent
to jam diffusion described above). In order to determine this
timescale we sample instantaneous site occupation over a time
τ in order to establish a partially time-averaged density on a
given site as

ρτ (x, t) = 1

τ

τ∑
i=1

ρ(x, t + i). (B.1)

The number of μDWs in branch A or B, at a given time
t , is then determined by following these densities along the
branch and counting how many times we cross the value 0.5
(on the increase or on the decrease). In the stationary state

Figure B.1. The number of micro domain walls (μDWs) in the split
branches of current-saturated HEX-TASEP, as a function of the
‘mesoscopic’ averaging time τ . A μDW is defined as a jump in
pre-averaged particle density crossing the value 1/2 (see the main
text). Data have been obtained for a HEX-TASEP simulation of
3L + 2 sites (L = 100), at an overall density of ρ = 0.5. For each
‘mesoscopic’ sampling time τ , the simulation was run for 105

sampling times. For large enough sampling times, τ ≈ 100 or larger,
there is only one μDW per branch, which must correspond to the
macroscopic domain wall we wish to localize, and we conclude that
a sampling time of τ = 100 is an appropriate choice. The inset is a
logarithmic plot of the same data, highlighting the asymptotic
approach to the sampling time required such that only the
macroscopic domain wall is detected.
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the time evolution of this pre-averaged quantity converges to
a long-time value. The resulting number of μDWs in the
stationary state is shown in figure B.1 for HEX-TASEP of one
unit cell and with periodic boundary conditions. The graph
confirms what is intuitively expected: the number of μDWs
decreases with the sample time τ , until only one interface
is left, which corresponds to the macroscopic DW. In order
to unambiguously locate the macroscopic DW, sampling is
required over a time of τ ≈ 100, which is the value stated
in the main text. This time interval is furthermore sufficiently
short that the DW has not diffused over a large distance
(cf figure 6), and the DW position so localized may therefore
indeed be used to characterize their dynamics, as in figure 7. In
practice we found this algorithm to be simple to use and robust,
avoiding the subtleties associated with so-called second-class
particles [21].
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